
dsb API Client PHP library
Documentation

Release 1.0

educa.ch

May 30, 2017

Contents

1 Introduction 1

2 User Guide 3
2.1 Installation . 3

2.1.1 Using Composer . 3
2.1.2 Manual installation . 3

2.2 Quickstart . 4
2.2.1 A note on API versions . 4
2.2.2 Authentication . 4
2.2.3 Search . 4
2.2.4 Loading a description . 5
2.2.5 Sending anonymous usage data . 6

2.3 Authentication . 6
2.3.1 Getting a private key . 7
2.3.2 Authenticating . 7
2.3.3 Chaining methods . 7

2.4 LOM-CH Descriptions . 8
2.4.1 Searching descriptions . 8
2.4.2 Loading a description . 12
2.4.3 Creating a new description . 14
2.4.4 Updating a description . 14
2.4.5 Validating a description . 14

2.5 Files . 15
2.5.1 Uploading files . 15

2.6 Ontology data . 16
2.7 Curricula . 16

2.7.1 Abstraction and developing new curriculum implementations 16
2.7.2 “Standard” (educa) curriculum . 19
2.7.3 Classification System . 20
2.7.4 Plan d’études Romand (PER) curriculum . 21
2.7.5 Lehrplan 21 (lp21) curriculum . 22
2.7.6 Mapping between curricula . 24

2.8 Unit testing your own application . 24

i

ii

CHAPTER 1

Introduction

The dsb Client library is a suite of PHP components that facilitate building new applications that communicate with
the national catalog of the Swiss digital school library (also knowns as dsb, Digitale Schulbibliothek).

This national catalog exposes a RESTful API (more information here), which allows partners (organizations that have
the right to access the catalog) to write to the catalog, as well as read from it and search for specific descriptions. A
description is a piece of data following the LOM-CH standard. The LOM-CH standard is a superset of the international
LOM standard. LOM-CH is fully compatible with LOM, but the inverse is not true (LOM-CH has more fields).

1

https://dsb-api.educa.ch/latest/doc/
https://en.wikipedia.org/wiki/Learning_object_metadata

dsb API Client PHP library Documentation, Release 1.0

2 Chapter 1. Introduction

CHAPTER 2

User Guide

Installation

Using Composer

The easiest way, by far, is to use Composer. Add the following line to your composer.json file’s "require"
hash:

{
"require": {

"educach/dsb-client": "dev-master"
}

}

Call the following command to download the library:

composer install

After installing, you need to require Composer’s autoloader:

require 'vendor/autoload.php';

Manual installation

If you wish to use this library without using Composer, you can download a release here, or do a checkout using Git
at https://github.com/educach/dsb-client.git.

Make sure you have some sort of autoloading mechanism in place. The dsb Client library is PSR-4 compatible.

3

https://getcomposer.org/
https://github.com/educach/dsb-client/releases
http://www.php-fig.org/psr/psr-4/

dsb API Client PHP library Documentation, Release 1.0

Quickstart

A note on API versions

At the time of writing, the RESTful API is at version 2. It is highly likely that this API will undergo backward
incompatible changes in the future, as the LOM-CH standard evolves. In order to plan for this in advance, the dsb
Client library has an abstract, base class for client implementations, and version specific implementations that inherit
from it.

Make sure to choose the correct client version, depending on which version of the RESTful API your connecting to.
For instance, for communicating with the version 2 of the RESTful API, you should use ClientV2.

Authentication

All communication with the API requires prior authentication. Upon registering with educa.ch to become a content
partner, you received a private RSA key, a username (usually an email address) along with a passphrase. You need to
pass this information to the client class.

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$client->authenticate();

} catch(ClientAuthenticationException $e) {
// The authentication failed.

}

Search

It is possible to search the catalog for specific descriptions. The search is very powerful and flexible, and beyond the
scope of this documentation. Refer to the RESTful API documentation for more information.

Search results are not LOM-CH objects, but do contain some of their information. The
Educa\DSB\Client\Lom\LomDescriptionSearchResult class can take a JSON decoded data structure
and facilitate it’s usage.

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;
use Educa\DSB\Client\Lom\LomDescriptionSearchResult;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$client->authenticate();
$searchResult = $client->search('Cookies');

} catch(ClientRequestException $e) {
// The request failed.

} catch(ClientAuthenticationException $e) {
// The authentication failed.

4 Chapter 2. User Guide

http://biblio.educa.ch/de/partner-1
https://dsb-api.educa.ch/latest/doc/#api-Search

dsb API Client PHP library Documentation, Release 1.0

}

$results = array();
foreach($searchResult['result'] as $lomData) {

$results[] = new LomDescriptionSearchResult($lomData);
}

// Get the first LomDescriptionSearchResult.
$lomDescription = $results[0];

// Fetch the field data.
echo $lomDescription->getTitle();
echo $lomDescription->getTeaser();

Loading a description

It is also possible to load a full LOM-CH description. This will contain a lot more information than the search results.

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;
use Educa\DSB\Client\Lom\LomDescription;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$client->authenticate();
$lomDescription = $client->loadDescription('asd789asd9hasd-asd7asdas-asd897asd978

→˓');
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

It is possible to fetch LOM-CH field data using special methods:

echo $lomDescription->getLomId();
echo $lomDescription->getPreviewImage();

Fields that contain data in multiple languages can be instructed to return the information in one language only by
specifying a language fallback array. The first language that matches will be returned. If no match is found, the field
will be returned in “raw” format (meaning, multilingual fields will be returned as an associative array, with field values
keyed by language).

// This will first look for a German title, then fallback to French and
// finally Italian.
echo $lomDescription->getTitle(['de', 'fr', 'it']);

// This will look for French first and fallback to English.
echo $lomDescription->getDescription(['fr', 'en']);

Not all fields have shortcut methods. For fields that the Educa\DSB\Client\Lom\LomDescriptionInterface
interface does not define shortcuts for, you can use the getField() method. For nested fields, use a dot (.)
notation:

2.2. Quickstart 5

dsb API Client PHP library Documentation, Release 1.0

echo $lomDescription->getField('lomId');

// Use a dot (.) notation to fetch nested fields.
echo $lomDescription->getField('lifeCycle.version');

// Fields that are arrays can use numeric field names to get specific items.
echo $lomDescription->getField('technical.keyword.0');

// Fields that are multilingual can use a language fallback array as the
// second parameter.
echo $lomDescription->getField('general.title', ['de', 'fr']);

Sending anonymous usage data

It is possible for partners to participate in the effort to provide a better service by sending anonymous user data. This
is fully optional, and no data is tracked by default. Applications can send 1 or more of these headers, as they see fit.
Applications can send the following HTTP headers:

• X-DSB-TRACK-ID: A tracker ID, managed by the client application, to track the user across searches and page
loads. This can be a completely arbitrary value, like a random hash. No personal details should be stored in this
header.

• X-DSB-REFERER: The HTTP referrer value.

• X-DSB-TRACK-IP: An IP to track the user. IPs are anonymized by the dsb API, meaning no personal data
is stored. For example, 192.168.1.28 will be stored as 192.168.1.xxx.

Not all headers are required. Applications can send only 1, 2, or all 3 of them, in any possible combination.

use Educa\DSB\Client\ApiClient\ClientV2;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

// When using a salt to generate a tracker ID, in order for this ID to
// remain consistent across page loads, the salt should be computed only
// once, either per session, per user, or even once for the entire
// application.
$salt = uniqid();
$client->addRequestHeader('X-DSB-TRACK-ID', md5($salt . session_id()));
$client->addRequestHeader('X-DSB-REFERER', $_SERVER['HTTP_REFERER']);
$client->addRequestHeader('X-DSB-TRACK-IP', $_SERVER['REMOTE_ADDR']());

try {
$client->authenticate();
// Start making requests, which will send the above usage data.

} catch(\Exception $e) {
// The request failed.

}

Authentication

Almost all communication with the API requires prior authentication. Authentication happens through the exchange
of data, signed with a private key. The API, which has access to the public key, verifies the validity of this signed data,
and returns an authentication token. This token then needs to be passed in the request headers for each request.

6 Chapter 2. User Guide

dsb API Client PHP library Documentation, Release 1.0

Getting a private key

You must register with educa.ch to become a content partner. You will receive a private RSA key, a username (usually
an email address) along with a passphrase. These three elements will be used by the client library to request an
authentication token from the API.

Authenticating

Authentication is pretty simple:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$client->authenticate();

} catch(ClientAuthenticationException $e) {
// The authentication failed.

}

The Client class will throw an exception in several cases:

• The private key could not be read: check the path, or that the private key is readable.

• The passphrase could not be loaded into memory: make sure the passphrase is correct.

• The request failed: the server did not return a 200 status code. Check the error message.

• The request succeeded, but the response did not contain a token.

If no exception is thrown, the authentication was successful. Once authenticated, the class can communicate with the
API.

Chaining methods

The client class supports chaining methods. It is thus possible to chain an authentication with another action. For
example:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$client->authenticate()->search('Dog');

} catch(ClientAuthenticationException $e) {
// The authentication failed.

} catch(ClientRequestException $e) {
// The request failed.

}

2.3. Authentication 7

http://biblio.educa.ch/de/partner-1

dsb API Client PHP library Documentation, Release 1.0

LOM-CH Descriptions

A description is a piece of data following the LOM-CH standard. The LOM-CH standard is a superset of the interna-
tional LOM standard. LOM stands for Learning Object Metadata. It is a standard for representing learning resources,
be it books, videos, websites, games, etc. The dsb (Digitale Schulbibliothek) groups many of these descriptions in a
large catalog, with an API for searching for descriptions, loading a full description, or even adding new ones.

All communication with the API regarding descriptions requires prior authentication. See Authentication for more
information.

Searching descriptions

Full text search

It is possible to search for description in a variety of ways. The most obvious is doing a full text search:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies');

} catch(ClientRequestException $e) {
// The request failed.

} catch(ClientAuthenticationException $e) {
// The authentication failed.

}

This will do a full text search on the word Cookies. All descriptions that fit the bill are returned by the API in JSON.
The client will convert this JSON to an associative array before returning it. The returned value has 3 keys:

• numFound: The number total number of results the API found. This could be more than the number of actual
results returned (defaults to 50).

• result: An array of descriptions, the actual search results.

• facets: A tree of facet data. More on this later. By default, this is empty.

You can get this data like so:

// Fetch the descriptions.
$descriptions = $searchResult['result'];

By default, each description has the following properties:

• lomId: The description identifier.

• title: The title of the description.

• teaser: A shorter version of the description body text.

• previewImage: An image representing the learning resource.

Other fields can be added if required. More below.

8 Chapter 2. User Guide

https://en.wikipedia.org/wiki/Learning_object_metadata

dsb API Client PHP library Documentation, Release 1.0

Adding facets

The API supports something called Faceted Search. Simply put, this allows a search engine to dynamically tell what
kind of filtering would be possible for the returned results. This information is then usually used to display some sort
of list of options (like checkboxes) which can be displayed on a search form to allow dynamic filtering of the results.

By default, no facets are active, but you can ask the API to compute facets for the current query:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies', ['learningResourceType

→˓']);
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

This will compute a list of resource types (text, image, website, etc) that are available for all found results. You may
use this information to build a search form, and display these facets as checkboxes. The values of these checkboxes
can then be used as filters (more below).

It is possible to pass more than one facet to the Client:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies', ['learningResourceType

→˓', 'educaSchoolLevels']);
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

A full list of available facets can be found here. A live-example of how these facets can be used can be found here.

Filtering results

It is possible to add filters to narrow the search down. This is often closely related to facets (see above). A filter is an
object, where each property name is a filter name, and its value is an array of possible values. For example, imagine
we only want descriptions in German:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

2.4. LOM-CH Descriptions 9

https://dsb-api.educa.ch/latest/doc/#api-Search-GetSearch
http://portal.dsb.educa.ch

dsb API Client PHP library Documentation, Release 1.0

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies', [], ['language' => ['de

→˓']]);
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

This will filter all results and only show ones in German. Multi-value filters are possible as well. Multiple values are
treated as OR, not AND:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies', [], [

→˓'learningResourceType' => ['text', 'image']]);
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

This will filter by descriptions that are either text-based or image-based (or both).

Additional fields

It is possible to add more fields to the search results. The 4th parameters passed to the client class when searching
allows you to specify what more fields should be returned for each search result. For example, the following would
add the language and version properties to the result:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies', [], [], ['language',

→˓'version']);
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

Read the API documentation for more information.

10 Chapter 2. User Guide

https://dsb-api.educa.ch/latest/doc/#api-Search-GetSearch

dsb API Client PHP library Documentation, Release 1.0

Pagination and limiting the number of results

It is possible to offset the results, effectively giving applications a way to support pagination. The offset is the 5th
parameter, and represents by how many items the results should be offset (usually a multiple of the 6th parameter,
limit; more below). The following will show results 21 to 70 (50 being the default limit):

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies', [], [], [], 20);

} catch(ClientRequestException $e) {
// The request failed.

} catch(ClientAuthenticationException $e) {
// The authentication failed.

}

It is also possible to limit the number of results. The following will only show 20 results (instead of 50, the default):

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies', [], [], [], 0, 20);

} catch(ClientRequestException $e) {
// The request failed.

} catch(ClientAuthenticationException $e) {
// The authentication failed.

}

Manipulating results

Manipulating this search data might prove cumbersome. This is why there is a special class, called
LomDescriptionSearchResult, which can greatly simplify displaying search results. Simply pass the JSON-
decoded value to the constructor:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;
use Educa\DSB\Client\Lom\LomDescriptionSearchResult;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$searchResult = $client->authenticate()->search('Cookies', [], [], ['language',

→˓'version']);
} catch(ClientRequestException $e) {

// The request failed.

2.4. LOM-CH Descriptions 11

dsb API Client PHP library Documentation, Release 1.0

} catch(ClientAuthenticationException $e) {
// The authentication failed.

}

foreach($searchResult['result'] as $lomData) {
$lomDescription = new LomDescriptionSearchResult($lomData);

echo $lomDescription->getTitle();
echo $lomDescription->getTeaser();
echo $lomDescription->getLomId();
echo $lomDescription->getPreviewImage();

}

For additional fields, like language and version in our example, you may use the method getField(). This
method takes a field name as a parameter:

foreach($searchResult['result'] as $lomData) {
$lomDescription = new LomDescriptionSearchResult($lomData);

echo $lomDescription->getField('language');
echo $lomDescription->getField('version');

}

Of course, this also works for the default fields:

foreach($searchResult['result'] as $lomData) {
$lomDescription = new LomDescriptionSearchResult($lomData);

echo $lomDescription->getField('title');
echo $lomDescription->getField('teaser');
echo $lomDescription->getField('lomId');
echo $lomDescription->getField('previewImage');

}

Loading a description

It is possible to load the full data for a resource. This will contain all meta-data, as well as data from the Ontology
server.

Ontology data

Ontology data provides human-readable strings for vocabulary entries. For example, a description can have several
contributors. Each of these contributors has a role, like author, editor, etc. These are machine-readable names, and
are always the same, regardless of which language the description is in. In order to keep the human-readable values,
as well as translations, of these vocabulary entries centralized, one can query the Ontology Server. This can be done
directly through the API. See Ontology data for more information. However, the API “injects” most if this data directly
into the loaded descriptions, which saves us the hassle.

Multilingual descriptions

Because this is communicating with the Swiss national catalog (which has 4 official languages), many descriptions
are multilingual. When loading a description, many fields, like title, keyword, etc, can have different values, one per
language.

12 Chapter 2. User Guide

http://ontology.biblio.educa.ch/
http://ontology.biblio.educa.ch/

dsb API Client PHP library Documentation, Release 1.0

Loading a description

Loading a description requires knowing its LOM identifier. This is a UUID, or a MD5 hash prefixed with archibald###
for older versions.

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$descriptionData = $client->authenticate()->loadDescription('asd89iowqe-sadjqw98-

→˓asd87a9doiiuowqe');
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

This loads the description data as an associative array into $descriptionData. Look at the API documentation
for more information on this data structure.

Manipulating a description

This object can be pretty hard to manipulate. That is where LomDescription comes in. The LomDescription
class can take a JSON-decoded LOM-CH data object and expose its properties in a much more convenient way:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;
use Educa\DSB\Client\Lom\LomDescription;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$descriptionData = $client->authenticate()->loadDescription('asd89iowqe-sadjqw98-

→˓asd87a9doiiuowqe');
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

$lomDescription = new LomDescription($descriptionData);

echo $lomDescription->getTitle();
echo $lomDescription->getDescription();
echo $lomDescription->getLomId();
echo $lomDescription->getPreviewImage();

Fields that contain data in multiple languages can be instructed to return the information in one language only by

2.4. LOM-CH Descriptions 13

https://dsb-api.educa.ch/latest/doc/#api-Description-GetDescription

dsb API Client PHP library Documentation, Release 1.0

specifying a language fallback array. The first language that matches will be returned. If no match is found, the field
will be returned in “raw” format (meaning, multilingual fields will be returned as an associative array, with field values
keyed by language).

// This will first look for a German title, then fallback to French and
// finally Italian.
echo $lomDescription->getTitle(['de', 'fr', 'it']);

// This will look for French first and fallback to English.
echo $lomDescription->getDescription(['fr', 'en']);

Not all fields have shortcut methods. For fields that the LomDescriptionInterface interface does not define
shortcuts for, you can use the getField() method. For nested fields, use a dot (.) notation:

echo $lomDescription->getField('lomId');

// Use a dot (.) notation to fetch nested fields.
echo $lomDescription->getField('lifeCycle.version');

// Fields that are arrays can use numeric field names to get specific items.
echo $lomDescription->getField('technical.keyword.0');

// Fields that are multilingual can use a language fallback array as the
// second parameter.
echo $lomDescription->getField('general.title', ['de', 'fr']);

Creating a new description

todo

Updating a description

todo

Validating a description

It is possible to validate a description to check if no mandatory fields are missing, that they are well formed and respect
the LOM-CH standard. Look at the API documentation for more information on this data structure.

Simple validation script:

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

// Load a json file containing the LOM object
$f = 'lom_object.json';
try {

$json = file_get_contents($f);
$result = $client->authenticate()->validateDescription($json);
echo "Using file $f\n";
if (!empty($response['valid'])) {

echo "\n> Description is valid.";
} else {

echo "\n> Description is invalid.\n";

14 Chapter 2. User Guide

https://dsb-api.educa.ch/latest/doc/#api-Description-PostDescription

dsb API Client PHP library Documentation, Release 1.0

echo "\nServer response:\n";
echo "==============================\n";
print_r($response);
echo "==============================\n";

}
} catch(ClientRequestException $e) {

// The request failed.
print "The post request failed. (" . $e->getMessage() . ')';

} catch(ClientAuthenticationException $e) {
// The authentication failed.
print "The authentification failed. (" . $e->getMessage() . ')';

}
echo "\n";

Response syntax

The response will always contain a valid key, which is a boolean.

If the submitted LOM object is invalid, the errors key will be populated with a list of issues.

In case of an invalid LOM object, the API will return:

{"valid":false,"message":"Description is not complete or not compliant.","errors":{
→˓"general.identifier":"missing","general.description":"missing","general.language":
→˓"missing"}}

The client returns a JSON decoded array:

Array
(

[valid] =>
[message] => Description is not complete or not compliant.
[errors] => Array

(
[general.identifier] => missing
[general.description] => missing
[general.language] => missing

)

)

Files

Files can be uploaded to the dsb (Digitale Schulbibliothek) API server to be hosted there. The dsb API provides
methods for images to be resized on the fly. This is a functionality partners can leverage to display images of certain
sizes to their users, instead of using the original, high-resolution version. Check out the official dsb API documentation
for more information.

Uploading files

Files can be uploaded using the uploadFile method. At the time of writing, the dsb API only allows image files.
Make sure you upload an image in a supported format.

2.5. Files 15

https://dsb-api.educa.ch/v2/doc/#api-File

dsb API Client PHP library Documentation, Release 1.0

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$result = $client->authenticate()->fileUpload('/path/to/file.jpg');

// The result contains the URL at which the file is accessible.
echo $result['fileUrl'];

} catch(ClientRequestException $e) {
// The request failed.

} catch(ClientAuthenticationException $e) {
// The authentication failed.

} catch(\RuntimeException $e) {
// Either the file is not readable or doesn't exist.

}

Ontology data

todo

Curricula

A curriculum allows the national catalog to categorize and describe a resource in context of a specific course cur-
riculum. For example, in the French part of Switzerland, many schools try to adhere to the PER curriculum. LOM
descriptions can contain meta-data information about how it can apply to this curriculum.

Curricula can vary greatly, and there’s not often a common ground or standard that they all can refer to. Instead, it is
up to the application to know how to treat the curriculum at hand.

In an effort to provide some level of abstraction and code re-use, the dsb Client Library comes with a set of curricula
implementations. These follow a very simple, yet powerful logic of storing curricula terms (e.g., school levels, con-
texts, themes, objectives, etc) in a flat tree structure. This allows applications to navigate the tree and get meta-data
information about each element.

Abstraction and developing new curriculum implementations

The base classes and interfaces make no assumption about the actual data format of the curricula. For instance, the
official document for the PER curriculum data structure is an XML file. The official document for the standard (a.k.a.
educa) curriculum data structure is a JSON file, and so on.

However, all curricula implementations must implement the CurriculumInterface interface. This interface de-
scribes methods for fetching curricula meta-data and structural information, allowing applications to better understand
how a typical curriculum tree could look.

For example, the describeDataStructure() method returns a standard format of describing relationships and
types of curriculum terms.

16 Chapter 2. User Guide

http://www.plandetudes.ch/

dsb API Client PHP library Documentation, Release 1.0

use Educa\DSB\Client\Curriculum\EducaCurriculum;

$curriculum = new EducaCurriculum();

var_export($curriculum->describeDataStructure());
// Results in:
// array (
// 0 =>
// stdClass::__set_state(array(
// 'type' => 'educa_school_levels',
// 'childTypes' =>
// array (
// 0 => 'context',
//),
//)),
// 1 =>
// stdClass::__set_state(array(
// 'type' => 'context',
// 'childTypes' =>
// array (
// 0 => 'school_level',
//),
//)),
// 2 =>
// stdClass::__set_state(array(
// 'type' => 'school_level',
// 'childTypes' =>
// array (
// 0 => 'school_level',
//),
//)),
// 3 =>
// stdClass::__set_state(array(
// 'type' => 'educa_school_subjects',
// 'childTypes' =>
// array (
// 0 => 'discipline',
//),
//)),
// 4 =>
// stdClass::__set_state(array(
// 'type' => 'discipline',
// 'childTypes' =>
// array (
// 0 => 'discipline',
//),
//)),
//)

describeTermTypes() provides even more information on what the term types actually stand for.

use Educa\DSB\Client\Curriculum\EducaCurriculum;

$curriculum = new EducaCurriculum();

var_export($curriculum->describeTermTypes());
// Results in:
// array (

2.7. Curricula 17

dsb API Client PHP library Documentation, Release 1.0

// 0 =>
// stdClass::__set_state(array(
// 'type' => 'context',
// 'purpose' =>
// array (
// 'LOM-CHv1.2' => 'educational level',
//),
//)),
// 1 =>
// stdClass::__set_state(array(
// 'type' => 'school level',
// 'purpose' =>
// array (
// 'LOM-CHv1.2' => 'educational level',
//),
//)),
// 2 =>
// stdClass::__set_state(array(
// 'type' => 'discipline',
// 'purpose' =>
// array (
// 'LOM-CHv1.2' => 'discipline',
//),
//)),
//);

asciiDump() provides a way to dump a tree representation to a ASCII string, helping in debugging.

use Educa\DSB\Client\Curriculum\EducaCurriculum;

$curriculum = new EducaCurriculum();

// Do some treatment, constructing the curriculum tree...

print $curriculum->asciiDump();
// Results in:
// --- root:root
// +-- context:compulsory education
// +-- school level:cycle_3
// +-- discipline:languages
// +-- discipline:french school language
// +-- context:special_needs_education
// +-- discipline:languages
// +-- discipline:french school language

The standard, static createFromData() method provides a standard factory method for creating new curriculum
elements, although the format of the actual data passed to the method is completely left to the implementor.

A curriculum tree consists of TermInterface elements. Each element has the following methods, allowing appli-
cations to navigate the tree:

• hasChildren(): Whether the term has child terms.

• getChildren(): Get the child terms.

• hasParent(): Whether the term has a parent term.

• getParent(): Get the parent term.

• isRoot(): Whether the term is the root parent term.

18 Chapter 2. User Guide

dsb API Client PHP library Documentation, Release 1.0

• getRoot(): Get the root parent term.

• hasPrevSibling(): Whether the term has a sibling term “in front” of it.

• getPrevSibling(): Get the sibling term “in front” of it.

• hasNextSibling(): Whether the term has a sibling term “after” it.

• getNextSibling(): Get the sibling term “after” it.

• findChildByIdentifier(): Allows to search direct descendants for a specific term via its identifier.

• findChildByIdentifierRecursive(): Same as above, but recursively descends onto child terms as
well

• findChildrenByName(): Allows to search direct descendants for a specific term via its name.

• findChildrenByNameRecursive(): Same as above, but recursively descends onto child terms as well.

• findChildrenByType(): Allows to search direct descendants for a specific term via its type.

• findChildrenByTypeRecursive(): Same as above, but recursively descends onto child terms as well.

Furthermore, it has one more method, describe(), which allows applications to understand what kind of term
they’re dealing with.

Thanks to these methods, applications can navigate the entire tree structure and treat it as a flat structure.

There is a basic implementation for terms, BaseTerm. It also implements the EditableTermInterface inter-
face, and is usually recommended for use within any curriculum implementation.

“Standard” (educa) curriculum

This curriculum has been deprecated, and replaced by the Classification System

The “standard” (or educa) curriculum is a non-official curriculum that aims to provide some basic curriculum that all
Swiss cantons can more or less relate to. Its definition can be found here.

The definition file is a JSON file that can be downloaded from the site (link). The EducaCurriculum class can parse
this information for re-use. The reason this raw definition data does not have to be passed to EducaCurriculum
every time is that applications might want to cache the parsing result, and pass the cached data in future calls. This
can save time, as the parsing can be quite time-consuming and memory intensive.

use Educa\DSB\Client\Curriculum\EducaCurriculum;

// $json contains the official curriculum data in JSON format.
$json = file_get_contents('/path/to/curriculum.json');
$curriculum = EducaCurriculum::createFromData($json);

// We can also simply parse it, and cache $data for future use.
$data = EducaCurriculum::parseCurriculumJson($json);

// Demonstration of re-use of cached data.
$curriculum = new EducaCurriculum($data->curriculum);
$curriculum->setCurriculumDictionary($data->dictionary);

The curriculum class supports the handling of LOM classification field data (field no 9). This is represented as a series
of taxonomy paths. Please refer to the REST API documentation for more information. By default, it only considers
discipline taxonomy paths. If you wish to parse a taxonomy path with another purpose key, pass it as the second
parameter to setTreeBasedOnTaxonPath().

2.7. Curricula 19

http://ontology.biblio.educa.ch/
http://ontology.biblio.educa.ch/json/educa_standard_curriculum
https://dsb-api.educa.ch/latest/doc/

dsb API Client PHP library Documentation, Release 1.0

use Educa\DSB\Client\Curriculum\EducaCurriculum;

// Re-use cached data for the dictionary and curriculum definition.
// See previous example.
$curriculum = new EducaCurriculum($data->curriculum);
$curriculum->setCurriculumDictionary($data->dictionary);

// $paths is an array of taxonomy paths. See official REST API documentation
// for more info.
$curriculum->setTreeBasedOnTaxonPath($paths);

print $curriculum->asciiDump();
// Results in:
// --- root:root
// +-- context:compulsory education
// +-- school level:cycle_3
// +-- discipline:languages
// +-- discipline:german school language
// +-- discipline:social and human sciences
// +-- discipline:citizenship
// +-- discipline:history
// +-- context:post compulsory education
// +-- discipline:languages
// +-- discipline:german school language
// +-- discipline:social and human sciences
// +-- discipline:history
// +-- discipline:psychology
// +-- discipline:philosophy
// +-- discipline:general_education
// +-- discipline:identity

Of course, you can call getTree() to get the root item of the tree, and navigate it.

Classification System

Not a true curriculum, this system allows educational resources to be classified independently from cantonal curricula.
Its definition can be found here.

The definition file is a JSON file that can be downloaded from the site (link). The
ClassificationSystemCurriculum class can parse this information for re-use. The reason this raw
definition data does not have to be passed to ClassificationSystemCurriculum every time is that appli-
cations might want to cache the parsing result, and pass the cached data in future calls. This can save time, as the
parsing can be quite time-consuming and memory intensive.

use Educa\DSB\Client\Curriculum\ClassificationSystemCurriculum;

// $json contains the official curriculum data in JSON format.
$json = file_get_contents('/path/to/curriculum.json');
$curriculum = ClassificationSystemCurriculum::createFromData($json);

// We can also simply parse it, and cache $data for future use.
$data = ClassificationSystemCurriculum::parseCurriculumJson($json);

// Demonstration of re-use of cached data.
$curriculum = new ClassificationSystemCurriculum($data->curriculum);
$curriculum->setCurriculumDictionary($data->dictionary);

20 Chapter 2. User Guide

http://ontology.biblio.educa.ch/
http://ontology.biblio.educa.ch/json/classification_system

dsb API Client PHP library Documentation, Release 1.0

The curriculum class supports the handling of LOM classification field data (field no 9). This is represented as a series
of taxonomy paths. Please refer to the REST API documentation for more information. By default, it only considers
discipline taxonomy paths. If you wish to parse a taxonomy path with another purpose key, pass it as the second
parameter to setTreeBasedOnTaxonPath().

use Educa\DSB\Client\Curriculum\ClassificationSystemCurriculum;

// Re-use cached data for the dictionary and curriculum definition.
// See previous example.
$curriculum = new ClassificationSystemCurriculum($data->curriculum);
$curriculum->setCurriculumDictionary($data->dictionary);

// $paths is an array of taxonomy paths. See official REST API documentation
// for more info.
$curriculum->setTreeBasedOnTaxonPath($paths);

print $curriculum->asciiDump();
// Results in:
// --- root:root
// +-- context:compulsory education
// +-- school level:cycle 3
// +-- discipline:languages
// +-- discipline:german school language
// +-- discipline:social and human sciences
// +-- discipline:history
// +-- context:post compulsory education
// +-- discipline:languages
// +-- discipline:german school language
// +-- discipline:social and human sciences
// +-- discipline:history
// +-- discipline:psychology
// +-- discipline:philosophy
// +-- discipline:general education
// +-- discipline:identity

Of course, you can call getTree() to get the root item of the tree, and navigate it.

Plan d’études Romand (PER) curriculum

The Plan d’études romand (or per) curriculum is an official curriculum for the French speaking cantons in Switzerland.
More information can be found here.

The definition data can be fetched via an API, which is openly accessible here. The PerCurriculum class can fetch
and parse this information for re-use. The reason this data does not have to be loaded by PerCurriculum every
time is that applications might want to cache the parsing result, and pass the cached data in future calls. This can save
time, as the parsing can be very time-consuming and memory intensive (it requires hundreds of GET requests to the
REST API).

use Educa\DSB\Client\Curriculum\PerCurriculum;

// $url contains the path to the REST API the class must use.
$url = 'http://bdper.plandetudes.ch/api/v1/';
$curriculum = PerCurriculum::createFromData($url);

// We can also simply parse it, and cache $data for future use.
$data = PerCurriculum::fetchCurriculumData($url);

2.7. Curricula 21

https://dsb-api.educa.ch/latest/doc/
https://www.plandetudes.ch/
http://bdper.plandetudes.ch/api/v1/

dsb API Client PHP library Documentation, Release 1.0

// Demonstration of re-use of cached data.
$curriculum = new PerCurriculum($data->curriculum);
$curriculum->setCurriculumDictionary($data->dictionary);

The curriculum class supports the handling of LOM-CH curriculum field data (field no 10). This is represented as a
series of taxonomy trees. Please refer to the REST API documentation, for more information on the structure.

use Educa\DSB\Client\Curriculum\PerCurriculum;

// Re-use cached data for the dictionary and curriculum definition.
// See previous example for more info.
$curriculum = new PerCurriculum($data->curriculum);
$curriculum->setCurriculumDictionary($data->dictionary);

// $trees is an array of taxonomy trees. See official REST API documentation
// for more info.
$curriculum->setTreeBasedOnTaxonTree($trees);

print $curriculum->asciiDump();
// Results in:
// --- root:root
// +-- cycle:1
// +-- domaine:4
// +-- discipline:13
// +-- objectif:76
// +-- discipline:11
// +-- objectif:77

Of course, you can call getTree() to get the root item of the tree, and navigate it.

A curriculum tree consists of TermInterface elements, just as for the other curricula implementations. However,
PerCurriculum uses a custom term implementation, PerTerm. This implements the same interfaces, so can be
used in exactly the same ways as the standard terms. The difference is PerTerm exposes a few more methods:

• findChildByCode(): Allows to search direct descendants for a specific term via its code (mostly applies
to Objectifs)

• findChildByCodeRecursive(): Same as above, but recursively descends onto child terms as well

• getUrl() and setUrl(): Get/set the URL property of an item (mostly applies to Objectifs)

• getCode() and setCode(): Get/set the code property of an item (mostly applies to Objectifs)

• getSchoolYears() and setSchoolYears(): Get/set the school years property of an item (mostly ap-
plies to Objectifs and Progressions d’apprentissage)

Lehrplan 21 (lp21) curriculum

The Lehrplan 21 (or lp21) curriculum is an official curriculum for the German speaking cantons in Switzerland. More
information can be found here.

The definition file is a XML file that can be downloaded from the site. The LP21Curriculum class can parse this
information for re-use. The reason this data does not have to be passed to LP21Curriculum every time is that
applications might want to cache the parsing result, and pass the cached data in future calls. This can save time, as the
parsing can be very time-consuming and memory intensive (the XML is over 20Mb in size).

use Educa\DSB\Client\Curriculum\LP21Curriculum;

22 Chapter 2. User Guide

https://dsb-api.educa.ch/latest/doc/
http://lehrplan.ch/

dsb API Client PHP library Documentation, Release 1.0

// $xml contains the official curriculum data in XML format.
$xml = file_get_contents('/path/to/curriculum.xml');
$curriculum = LP21Curriculum::createFromData($xml);

// We can also simply parse it, and cache $data for future use.
$data = LP21Curriculum::parseCurriculumXml($xml);

// Demonstration of re-use of cached data.
$curriculum = new LP21Curriculum($data->curriculum);
$curriculum->setCurriculumDictionary($data->dictionary);

The curriculum class supports the handling of LOM-CH curriculum field data (field no 10). This is represented as a
series of taxonomy trees. Please refer to the REST API documentation, for more information on the structure.

use Educa\DSB\Client\Curriculum\LP21Curriculum;

// Re-use cached data for the dictionary and curriculum definition.
// See previous example for more info.
$curriculum = new LP21Curriculum($data->curriculum);
$curriculum->setCurriculumDictionary($data->dictionary);

// $trees is an array of taxonomy trees. See official REST API documentation
// for more info.
$curriculum->setTreeBasedOnTaxonTree($trees);

print $curriculum->asciiDump();
// Results in:
// --- root:root
// +-- zyklus:3
// +-- fachbereich:010fby8NKE8fCB79TRL69VS8VT4HnuHmN
// +-- fach:010ffPWHRKNUdFDK9LRgFbPDLXwTxa4bw
// +-- fachbereich:010fbNpVqv9R3TePRnCeZECuB4ucv6rEw
// +-- kompetenzbereich:010kbAnkUn9X9c8kz25FN9zFTFaHdAbPb
// +-- handlungs_themenaspekt:010hafG6hGk8FZJWduaNDBGE4zhRWnvXK
// +-- fachbereich:010fbNpVqv9R3TePRnCeZECuB4ucv6rEw
// +-- kompetenzbereich:010kbAnkUn9X9c8kz25FN9zFTFaHdAbPb
// +-- fachbereich:010fbNpVqv9R3TePRnCeZECuB4ucv6rEw
// +-- kompetenzbereich:010kbAnkUn9X9c8kz25FN9zFTFaHdAbPb
// +-- handlungs_themenaspekt:010ha4HnxH3GG5f5mqe8bddWtJK8bbVmD

Of course, you can call getTree() to get the root item of the tree, and navigate it.

A curriculum tree consists of TermInterface elements, just as for the other curricula implementations. However,
LP21Curriculum uses a custom term implementation, LP21Term. This implements the same interfaces, so can
be used in exactly the same ways as the standard terms. The difference is LP21Term exposes a few more methods:

• findChildByCode(): Allows to search direct descendants for a specific term via its code

• findChildByCodeRecursive(): Same as above, but recursively descends onto child terms as well

• getUrl() and setUrl(): Get/set the URL property of an item (mostly applies to Kompetenzstufe)

• getCode() and setCode(): Get/set the code property of an item

• getVersion() and setVersion(): Get the version of the Lehrplan this item is meant for (mostly applies
to Kompetenzstufe)

• getCantons() and setCantons(): Get the Cantons this item is meant for (mostly applies to Fachbere-
iche)

2.7. Curricula 23

https://dsb-api.educa.ch/latest/doc/

dsb API Client PHP library Documentation, Release 1.0

• getCycles() and setCycles(): Get the cycles this item applies to (mostly applies to Kompetenzstufe)

Mapping between curricula

It is possible to map certain terms from one curriculum to another. Not all curricula support being mapped to, or from.
Check the REST API documentation for more information.

Mapping is achieved by passing the source curriculum ID, the target curriculum ID, and the ID of the term to map:

use Educa\DSB\Client\ApiClient\ClientV2;
use Educa\DSB\Client\ApiClient\ClientAuthenticationException;
use Educa\DSB\Client\ApiClient\ClientRequestException;

$client = new ClientV2('https://dsb-api.educa.ch/v2', 'user@site.com', '/path/to/
→˓privatekey.pem', 'passphrase');

try {
$suggestions = $client->authenticate()->getCurriculaMappingSuggestions(

'per',
'classification_system',
'objectifs-1'

);
} catch(ClientRequestException $e) {

// The request failed.
} catch(ClientAuthenticationException $e) {

// The authentication failed.
}

This will return a list, keyed by term identifier, each containing a list of suggestions.

Unit testing your own application

It is possible to write unit tests for your own application by using the TestClient class instead of one of the real
implementations. This class implements the same ClientInterface interface, and returns mocked results. It’s
implementation is pretty simple, but can do the trick for many test cases. If you wish to have more complex results,
you may simply extend it and implement your own.

It is a good idea to use some kind of dependency injection in your application. Symfony and Silex provide such
mechanisms out of the box. Another popular method is using Pimple. In the official dsb Client Drupal module, a
simple function returns an instance of the client based on the system settings. Anyway, if you make sure the client
class is returned by some sort of service container or function, you can make sure it returns a TestClient in your
testing environment, allowing your unit tests to run without requiring actual access to the API.

It is recommended to look at the source code of the TestClient, to get a better understanding of how it can be used
inside a test environment.

24 Chapter 2. User Guide

https://dsb-api.educa.ch/latest/doc/
http://symfony.com/
http://silex.sensiolabs.org/
http://pimple.sensiolabs.org/
https://www.drupal.org/project/dsb_portal
https://github.com/educach/dsb-client/blob/master/src/Educa/DSB/Client/ApiClient/TestClient.php

	Introduction
	User Guide
	Installation
	Using Composer
	Manual installation

	Quickstart
	A note on API versions
	Authentication
	Search
	Loading a description
	Sending anonymous usage data

	Authentication
	Getting a private key
	Authenticating
	Chaining methods

	LOM-CH Descriptions
	Searching descriptions
	Loading a description
	Creating a new description
	Updating a description
	Validating a description

	Files
	Uploading files

	Ontology data
	Curricula
	Abstraction and developing new curriculum implementations
	``Standard'' (educa) curriculum
	Classification System
	Plan d'études Romand (PER) curriculum
	Lehrplan 21 (lp21) curriculum
	Mapping between curricula

	Unit testing your own application

